

A-4780 Schärding · Alfred-Kubin-Straße 9 a-c · Tel. 07712 / 31 63 - 0 · Fax 07712 / 31 63 - 33 · flachdichtung@hennlich.at · www.hennlich.at

Flachdichtungen Stopfbuchspackungen

- PTFE-Dichtungsmaterialien
- Metall- und Metall-Weichstoffdichtungen
- Profildichtungen
- DIN Dichtungen
- Training / Schulung
- Seal-Cage-System

INHALT

PTFE als Dichtungsmaterial	Seite	3	3
Monoaxiales PTFE-Dichtungsmaterial, Montageanleitung	Seite	4 - 6	6
Multidirektionales PTFE-Dichtungsmaterial	Seite	7	7
Hochreine ePTFE-Dichtung mit Diffusionssperre	Seite	8	3
PTFE-Hüllendichtungen	Seite	ç	9
Virginales, gesintertes PTFE	Seite	10)
Gewindedichtband HZ 105	Seite	10)
Strukturiertes PTFE-Dichtungsmaterial TF	Seite	11 - 13	3
Marktübliche Dichtungswerkstoffe	Seite	14	4
Grafit als Dichtungsmaterial	Seite	15	5
Metall- und Metall-Weichstoffdichtungen	Seite	16 - 18	3
Gummi-Stahl-Dichtungen	Seite	19	9
Profil-, Form- und aufblasbare Dichtungen	Seite	20)
Milchrohrverschraubungsringe DIN 11851	Seite	21	1
Standard-Flachdichtungen nach DIN 2690	Seite	22	2
Standard-Flachdichtungen nach EN 1514-1	Seite	23 - 24	4
Hochtemperaturdichtungen	Seite	25	5
Stopfbuchspackungen	Seite	26 - 27	7
HENNLICH Seal-Cage-System	Seite	28 - 29	9
Schulung / Training für Stopfbuchspackungen	Seite	30)
Service für Gleitringdichtungen	Seite	31	1

Alle technischen Informationen dieses Kataloges und Beratungen beruhen auf unseren bisherigen Erfahrungen und sind nach bestem Wissen aufbereitet. Sie begründen jedoch keine Haftung unsererseits. Angaben und Werte bedürfen stets der Überprüfung durch den Anwender, da nur derjenige die Wirksamkeit einer Abdichtung voll beurteilen kann, der alle Daten am Einsatzort selbst überprüfen kann. Die angegebenen Einsatzparameter aller aufgeführten Packungstypen sind Näherungswerte und können sich bei gleichzeitigem Auftreten gegenseitig beeinflussen.

Sollten Sie besondere Einsatzfälle haben, empfehlen wir Rücksprache mit uns zu halten.

PTFE als Dichtungsmaterial

PTFE-Dichtungswerkstoffe der neuesten Generation

Zahlreiche Vorteile machen unsere PTFE-Produkte zum optimalen und universell einsetzbaren Dichtungsmaterial:

- chemische Beständigkeit von pH 0 14
- temperaturbeständig von –260 °C bis +270 °C (kurzzeitig sogar bis +310 °C)
- · hohe Druckstandfestigkeit
- physiologisch unbedenklich
- FDA-konform, EG-Verordnung 1935/2004, USP Class VI
- · witterungs-, alterungs- und UV-beständig
- · nicht brennbar
- vakuumbeständig

Durch moderne Herstellungsprozesse perfektioniert

Monoaxial

Unsere universell einsetzbaren, monoaxialen Dichtbänder werden aus 100 % reinem PTFE (Polytetrafluorethylen) hergestellt.

Durch ein spezielles, thermomechanisches Reckverfahren entsteht eine mikroporöse Faserstruktur. Dadurch entsteht eine hohe Zugfestigkeit und Formbarkeit. Durch die ausgezeichnete Anpassungsfähigkeit des Materials eignen sich gereckte PTFE-Dichtbänder hervorragend für leicht beschädigte und/oder unebene Flanschflächen, welche bereits mit relativ geringer Flächenpressung effektiv abgedichtet werden können.

Multidirektional

Ausgehend vom Herstellungsverfahren unserer monoaxialen PTFE-Bänder wurde intensiv an der Verbesserung der nachteiligen Faktoren - insbesondere des Fließverhaltens - gearbeitet. Durch die Weiterentwicklung des sehr aufwändigen, thermomechanischen Reckverfahrens wird die Faserstruktur

multidirektional ausgerichtet.
Dadurch ist eine nahezu gleiche
Längs- wie Querfestigkeit des
Materials gewährleistet.

Dies bewirkt eine hervorragende Kriechbeständigkeit sowie eine außerordentliche Dimensionsstabilität, ohne dabei die erstklassigen Dichteigenschaften von PTFE zu beeinträchtigen.

Strukturiert

Um unser reichhaltiges Sortiment an PTFE-Dichtungsmaterial noch weiter auszubauen bieten wir auch strukturierte Dichtungsplatten aus gefülltem PTFE.

Durch ein besonderes Produktionsverfahren wird ein sehr hohes Faserungsniveau erreicht, welches zu einer erhöhten mechanischen Festigkeit führt.

Dadurch wird die Handhabung der gestanzten Dichtungen deutlich erleichtert.

Sämtliche Produktionsabläufe unterliegen einer strikten - unter ISO 9001 registrierten - Qualitätskontrolle.

Monoaxiales PTFE-Dichtungsmaterial

HENNLICH & ZEBISCH GmbH

Dichtungsband Monax

Monax ist ein hochwertiges, 100 % reines, expandiertes PTFE-Flachdichtungsband, welches durch ein spezielles monoaxiales Reckverfahren hergestellt wird. Ein einseitig aufgebrachter, für Lebensmittel zugelassener Klebestreifen dient als Montagehilfe.

Anwendungen

- Abdichtung von Flanschverbindungen
- Gehäuseabdichtung von Pumpen, Getrieben, Kompressoren u.a.
- Deckeldichtung bei verschiedensten Behältern
- Abdichtung für Lüftungsanlagen, Wärmetauscher usw.
- Abdichtung bei allen druck- und spannungsempfindlichen Verbindungen, bei denen nur ein geringer Anpressdruck aufgebracht werden kann
- · Glas- und Emailflansche

Prüfungen und Zulassungen BAM, WRAS, DVGW, EU 1935/2004, TA Luft, FDA

Vorteile und Sicherheit

- · chemische Beständigkeit gegen fast alle Medien
- · hohe Temperaturbeständigkeit
- witterungs-, alterungs-, und UV-beständig
- · universelle Einsetzbarkeit verhindert Verwechslungsgefahr

Einfache und schnelle Montage

- Klebestreifen
- · Anpassungsfähigkeit (keine Überarbeitung der Dichtflächen notwendig)
- schnellerer Ausbau (da sich das Dichtband leicht und rückstandslos entfernen lässt)
- · Band kann aufgedoppelt werden

Kostenvorteil

- · reduzierte Stillstandszeiten durch einfache Montage
- geringere Lagerkosten (da mit Monax fast alle Anwendungsbereiche abgedeckt werden können)
- · kein Verschnitt 100 % der Rolle werden verwendet

Technische Daten				
Dichte im Lieferzustand	$g = 0.65 \text{ g/cm}^3 (\pm 0.1 \text{ g/cm}^3)$			
Temperatur	-260 °C bis +270 °C			
Druck	von Vakuum bis 200 bar			
рН	0 bis 14			
Dichtungskennwert Einbau	$\sigma_{VU/0,01} = 23.8 \text{ MPa (40 bar)}$			
Dichtungskennwert Betrieb	m _{0,01} = 2			

Maß [mm]	Maß [mm] Rollenlänge [m]		nm] Rollenlänge [m]		
3 x 1,5	3 x 1,5 25 17 x 6		8		
5 x 2	5 x 2 25 20 x 7		5		
7 x 2,5	7 x 2,5 25		5		
10 x 3	10 x 3 10		5		
12 x 4	10	28 x 5	5		
14 x 5	10	40 x 5	5		

Weitere Bandabmaße auf Anfrage.

Weitere Lieferformen

Spezielle Dimensionen und Dimensionsempfehlungen auf Anfrage.

Hinweis

Auch in runden Querschnitten von 1 bis 17 mm lieferbar.

Dichtungsband Monax-W

Monax-W ist ein universell einsetzbares, 100 % reines, expandiertes PTFE-Flachdichtungsbreitband von der Spule, dessen Festigkeit in Längsrichtung überwiegt. Monax-W eignet sich besonders zum Ausschneiden oder Ausstanzen von kleineren Dichtungen und ist mit einer vollflächigen, lebensmitteltauglichen Klebefolie als Montagehilfe versehen (auf Wunsch auch ohne Klebefolie).

Vorteile

- sämtliche Vorteile von 100 % reinem PTFE
- · verschiedenste Maße ausstanzbar
- · schwierige Formen mit einfachen Werkzeugen herstellbar
- · Kostenvorteil durch verminderte Stillstands- und Lagerzeiten
- · Flanschunebenheiten werden zuverlässig ausgeglichen

Technische Daten	
Dichte im Lieferzustand	$S = 0.75 \text{ g/cm}^3 \text{ ($\pm 0.1 \text{ g/cm}^3$)}$
Temperatur	-260 °C bis +270 °C
Druck	von Vakuum bis 200 bar
рН	0 bis 14
Dichtungskennwert Einbau	σ _{VU/0,01} = 30 MPa
Dichtungskennwert Betrieb	m _{0.01} = 2,5

Lieferformen

In Breiten von 25 / 50 / 100 / 200 mm und Dicken von 0,5 / 1 / 2 / 3 mm erhältlich.

Prüfungen und Zulassungen

FDA, WRAS, EU 1935/2004

Dichtungsband Monax-HD

Das Besondere am ebenfalls 100 % reinen PTFE-Flachdichtungsband Monax-HD von der Spule besteht darin, dass es bereits in vorverdichtetem Zustand geliefert wird. Monax-HD eignet sich - bedingt durch seine höhere Ausgangsdichte im Vergleich zu herkömmlichen PTFE-Flachdichtungsbändern - ganz besonders zum Ausgleich von großen Unebenheiten und überall dort, wo eine größere Restdicke benötigt wird.

Vorteile

- sämtliche Vorteile von 100 % reinem PTFE
- höhere Ausgangsdichte, dadurch größere Restdicke

Typische Anwendungen

- Abdichtung von Rohrbündelwärmetauschern
- · große Behälter, Flansche und Tankdeckel
- Pumpengehäuse
- · Hand- und Mannlochöffnungen, uvm.

Maß [mm]	Rollenlänge [m]
3,2 x 0,3	25
3,2 x 0,7	25
4 x 2,5	25
6 x 4,6	10
8 x 5,5	10
10 x 7	10
15 x 6	10

Technische Daten				
Dichte im Lieferzustand	$S = 1.0 \text{ g/cm}^3 \text{ ($\pm 0.1 \text{ g/cm}^3$)}$			
Temperatur	-260 °C bis +270 °C			
Druck	von Vakuum bis 200 bar			
рН	0 bis 14			
Dichtungskennwert Einbau	σ _{VU/0,01} = 26,5 MPa			
Dichtungskennwert Betrieb	$m_{0,01} = 2$			

Prüfungen und Zulassungen FDA, WRAS, EU 1935/2004

Dichtungsband Monax-G

Da herkömmliche PTFE-Dichtungsmaterialien keine elektrische und thermische Leitfähigkeit besitzen, wurde dieses PTFE-Flachdichtungsband mit Grafit gefüllt. Trotzdem bleiben viele positive chemische und thermische Eigenschaften von reinem PTFE erhalten. Der Füllstoff Grafit hat auch keine Auswirkungen auf die physiologische Unbedenklichkeit.

Vorteile

- · elektrische Leitfähigkeit
- · physiologisch unbedenklich, nicht toxisch
- weder Geruch noch Eigengeschmack
- · unterliegt keiner Alterung
- nicht kontaminierend
- · einfache und schnelle Montage durch Klebestreifen

Anwendungsgebiete

- · überall dort, wo elektrische Leitfähigkeit gefordert ist
- Temperaturwechselbelastungen
- · Flansch- oder Gehäuseverbindungen

Maß [mm]	Rollenlänge [m]		
7 x 2,5	10		
12 x 4	10		
14 x 5	10		
17 x 6	10		
20 x 7	10		

Technische Daten				
Dichte im Lieferzustand	$S = 1.0 \text{ g/cm}^3 (\pm 0.1 \text{ g/cm}^3)$			
Temperatur	-260 °C bis +270 °C			
Druck	von Vakuum bis 200 bar			
pH	0 bis 14			
Dichtungskennwert Einbau	σ _{VU/0,01} = 27 MPa			
Dichtungskennwert Betrieb	$m_{0,01} = 2$			

Montageanleitung Monax

Dichtflächen müssen sauber und fettfrei sein. Schrauben und Muttern mit einem geeigneten Schmiermittel schmieren bzw. bei Bedarf austauschen.

Abdeckpapier des Klebebandes nach und nach entfernen und das Dichtband, beginnend bei einem Bolzenloch, dem Verlauf der Dichtfläche folgend, innerhalb des Lochkreises aufkleben.

Die Enden nicht auf Stoß setzen, sondern vor einem Bolzen gekreuzt überlappt (ca. 20 mm Überlappung) anordnen. Anschließend die Schrauben in mehreren Durchgängen stufenweise über Kreuz anziehen.

Empfohlene Flächenpressung: 25 - 30 N/mm².

Bei gröberen Unebenheiten ist eventuell das nächstgrößere Band zu wählen, es kann auch partiell mit MONAX unterfüttert werden.

Bei besonders schwierigen Dichtaufgaben (Bewegung, Vibration u.ä.) können auch zwei Streifen MONAX nebeneinander aufgebracht werden (Fig. 2).

Die gewellte Art der Aufbringung (Fig. 3) empfiehlt sich bei spannungsempfindlichen Materialien, wie z.B. Glas, Keramik, Email, Kunststoff etc.

Bei sehr empfindlichen Flanschverbindungen sollten die Enden durch Schräg- oder Kerbschnitt zusammengefügt werden (nicht überlappend).

Multidirektionales PTFE-Dichtungsmaterial

Dichtungsband Multi-X

Das Flachdichtungsband Multi-X aus 100 % reinem PTFE gehört zur technologisch hochwertigen Gruppe der multidirektional expandierten PTFE-Dichtungswerkstoffe. Ein spezielles Herstellungsverfahren gewährleistet eine nahezu gleiche Zugfestigkeit in Längs- und Querrichtung. Eine hohe Dimensionsstabilität und das äußerst geringe Fließverhalten wird ergänzt durch ausgezeichnete Anpassungsfähigkeit und einfache Handhabung. Dadurch bewährt sich unser Flachdichtungsband Multi-X speziell beim Ausgleich von Unebenheiten und/oder Beschädigungen der Dichtflächen, sowie für alle druck- und spannungsempfindlichen Verbindungen.

Anwendungsgebiete

- Abdichtungen mit relativ schmalen Dichtflächen
- wenn bestimmte, vordefinierte
 Dichtungsbreiten verlangt werden
- emaillierte Flansche, Rohrbündelwärmetauscher
- große Flansche, Behälter, Druckbehälter, etc.

Prüfungen und Zulassungen

FDA, EU 1935/2004, WRAS, TA Luft, BAM, DVGW, ABS Certificate, Blowout-Test, USP Class VI

Vorteile und Sicherheit

- kein Kaltfluss beim Verpressen, lediglich Veränderung in der Dichtungshöhe
- chemische Beständigkeit gegen alle Medien (Ausnahme: geschmolzene Alkalimetalle und elementares Fluor)
- · hohe Temperaturbeständigkeit
- physiologisch unbedenklich

Kostenvorteil

- geringere Lagerkosten durch vielseitige Verwendbarkeit weniger Typen
- · keine Abfälle
- · stark reduzierte Verwechslungsgefahr
- geringste Stillstandszeiten (kein zeitraubendes Stanzen oder Zuschneiden, einfache Montage)
- unbegrenzt lagerfähig (ohne Klebestreifen)

Technische Daten			
Dichte im Lieferzustand	$S = 0.80 \text{ g/cm}^3 \text{ ($\pm 0.1 \text{ g/cm}^3$)}$		
Temperatur	-260 °C bis +270 °C		
Druck	von Vakuum bis 200 bar		
pH	0 bis 14		
Mindest-Flächenpressung	Q _{min 0,01} = 23 MPa		
Mindest-Flächenpressung nach Entlastung	Q _{Smin 0,01} < 10 MPa		
Maximale Flächenpressung	Q _{max} > 240 MPa		
TA-Luft/Leckage nach VDI 2440	L = 2,6 • 10 ⁻⁷ mbar l/(sm)		

Lieferformen

In den Breiten von 10 bis 65 mm und Dicken von 2 bis 9 mm.

Montageanleitung Multi-X

Dichtflächen müssen sauber und fettfrei sein. Die Schrauben und Muttern mit einem geeigneten Schmiermittel schmieren bzw. bei Bedarf austauschen. Dichtflächen müssen sauber und fettfrei sein. Die Schrauben und Muttern mit einem geeigneten Schmiermittel schmieren bzw. bei Bedarf austauschen.

- 1. Den Anfang des Dichtbandes mit einem scharfen Messer schräg zuschneiden. Über eine Länge von ca. 6-mal der Banddicke den Schrägschnitt ausführen.
- 2. Das Abdeckpapier des Klebebandes partiell entfernen und das Dichtband, beginnend bei einem Bolzenloch, dem Verlauf der Dichtfläche folgend, aufkleben.
- Die Verbindung der Enden wie unten dargestellt ausführen. Im Bereich der Verbindungsstelle sollte die Materialhöhe ca. 110 % der Höhe des Dichtbandes betragen. Anschließend die Schrauben in mehreren Durchgängen, stufenweise über Kreuz anziehen.

Besondere Hinweise: Bei größeren lokalen Beschädigungen oder Unebenheiten der Dichtflächen kann durch Aufbringen einer zusätzlichen Lage von Multi-X im beschädigten und/oder unebenen Bereich - ein sicheres Abdichten gewährleistet werden.
Bei der Auswahl der dafür am besten geeigneten Abmessungen beraten wir Sie gerne. Um das Durchbiegen von dünnen oder schwachen Flanschen zu verhindern, wird - zum Ausschließen der Kippmomente - ein Dichtband in einer Breite empfohlen, mit der die gesamte Dichtfläche abdeckt werden kann. Sollte nur eine schmale Dichtfläche zur Verfügung stehen, wird ein wellenförmiges Verlegen
des Dichtbandes empfohlen (siehe Abb.)

Diese Art der Aufbringung empfiehlt sich auch bei spannungsempfindlichen Materialien, wie z.B. Glas, Keramik, Email, Kunststoff etc. Ein Nachziehen der Schrauben bei Betriebstemperatur ist speziell bei Dichtflächen mit gewölbter Oberfläche nicht zu empfehlen (z.B. emaillierte Oberflächen).

Multi-X und PTFE-Hüllendichtungen

HENNLICH & ZEBISCH GmbH

Dichtungsplatte Multi-X

Multi-X ist eine aus multidirektional gerecktem PTFE hergestellte hochwertige Dichtungsplatte.

Die durch den speziellen Herstellungsprozess erreichte multidirektionale Faserausrichtung bewirkt eine nahezu identische Längs- wie Querfestigkeit und macht Dichtungen aus Multi-X zu einem der sichersten und zuverlässigsten Dichtungsmaterialen überhaupt. Kaltfluss und Kriechverhalten sind praktisch eliminiert, die Dichtungskennwerte wesentlich verbessert, die hervorragenden Eigenschaften von PTFE bleiben jedoch uneingeschränkt erhalten.

Maß [mm]			
1500 x 1500 x 0,5			
1500 x 1500 x 1			
1500 x 1500 x 2			
1500 x 1500 x 3			
1500 x 1500 x 4			
1500 x 1500 x 5			
1500 x 1500 x 6			

Vorteile

- beim Verpressen ausschließlich Veränderung in der Dichtungshöhe
- einfach zu schneiden und zu stanzen
- · hervorragend geeignet für Emailflansche
- · kein Überarbeiten der Dichtfläche notwendig
- sämtliche Vorteile von 100 % reinem PTFE
- · Ausgleich von Unebenheiten und beschädigten Dichtflächen

Anwendungsgebiete

- für alle druck- und spannungsempfindlichen Verbindungen
- bei aggressivsten Medien und höchsten Reinheitsanforderungen
- Flanschverbindungen, Gehäuseabdichtung von Pumpen, Getrieben, ...
- Abdichtung von Hand- und Mannlochöffnungen
- · Lüftungsanlagen, Wärmetauscher, etc.

Prüfungen und Zulassungen

 \mbox{FDA} , EU 1935/2004, WRAS, TA Luft, BAM, DVGW, ABS Certificate, Blowout-Test, USP Class VI

PTFE-Hüllendichtungen

Beschreibung

Elastomer- oder Weichstoffdichtungen erhalten durch Verwendung von PTFE-Hüllen eine exzellente chemische Beständigkeit. Durch die plastische Anpassung an die Flanschoberfläche erreichen PTFE-Hüllendichtungen bei entsprechender Flächenpressung besonders niedrige Leckageraten. Durch die Auswahl spezieller PTFE-Typen mit niedrigem Kaltfluss, z. B. Dyneon TFM1600, kombiniert mit Einlagen aus Wellringen mit beidseitigen Grafitauflagen, können selbst schwierigste Dichtungsanwendungen, wie z.B. Stahl-Emailflansche oder Dichtverbindungen mit hoher thermischer Wechselbeanspruchung, dauerhaft abgedichtet werden.

Ausführungen

Y-Hülle

Vorzugsweise mit nur einer Einlage.

Bei nicht kritischen Anwendungsfällen mit geringerem Druck- und Temperaturpotential.

UR-Hülle

PTFE-Hülle in runder Ausführung für hohe Anforderungen. Keine Kerbwirkung am Innendurchmesser. Ein spezielles Schweißverfahren ohne nachteilige Überlappung der PTFE-Folien ermöglicht selbst große PTFE-Hüllendichtungen mit gleichen Leistungsmerkmalen wie die nahtlos gedrehten Ausführungen herzustellen.

UE-Hülle

PTFE-Hülle für Anwendungen bei Flanschen nach DIN 2691, Nutfeder und DIN 2692 Vor-/Rücksprung.

UE-D-Hülle

Wie Typ UE jedoch mit Innenrandverstärkung als Diffusionssperre.

Materialaufbau

Die Hülle besteht aus 100 % reinem PTFE. Durch Beimischung von 2 % Leitpigment zum PTFE-Pulver, oder einer Erdungslasche am Wellring, können PTFE-Hüllendichtungen auch leitend ausgerüstet werden.

Hochreine ePTFE-Dichtung mit Diffusionssperre

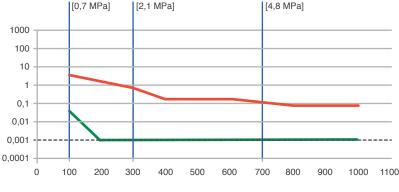
28LS-LE

28LS-LE ist eine neue Generation von Dichtung aus 100% reinem, multidirektional expandierten PTFE. Diese biokompatiblen Dichtungen wurden speziell für die pharmazeutische, chemische und Lebensmittelindustrie entwickelt.

Eine Diffusionssperre gewährleistet bereits bei niedrigster Flächenpressung eine außergewöhnlich hohe Dichtheit.


28LS-LE Dichtungen sind daher ideal für Verbindungen bei denen nur eine niedrige Flächenpressung aufgebracht werden kann, z.B. bei Kunststoffflanschen.

Vorteile


- Universell einsetzbare Dichtungen für alle Rohrleitungssysteme. Sie sind für alle Arten von Flanschen, fast alle Medien und einen breiten Temperaturbereich geeignet und erfüllen die strengsten Reinheitsanforderungen. Sie sind für CIP (cleaning in place) und SIP (sterilising in place) Anwendungen geeignet.
- Hohe mechanische Festigkeit und somit auch bei h\u00f6heren Temperaturen minimaler Kaltfluss.
- Dimensionsstabil.
- Die Diffusionssperre am Innendurchmesser resultiert in extrem niedrigen Leckagewerten und reduziert mögliche Querschnittsdiffusion.
- FDA und EU 1935/2004 Zertifikate erhältlich.
- Dichtungen können durch Prägung auf der Dichtungsoberfläche leicht identifiziert werden.
- 28LS-LE Dichtungen altern nicht und können daher zeitlich unbegrenzt gelagert werden.

Leckagekennwerte

Leckage [l/s]

Leckagerate 28LS-LE (grün) im Vergleich mit Low Load Gasket eines Mitbewerbers (orange)

Leckagerate 28LS-LE (grün) im Vergleich mit ePTFE Material ohne Diffunsionssperre (rot)

Virginales, gesintertes PTFE

Virginales PTFE, fertige Zuschnitte, Rollen, Streifen, Platten

PTFE als gesintertes, virginales Material weist neben einer großen Grundhärte, sehr gute weitere Materialeigenschaften auf:

- · ausgezeichnete Antihafteigenschaften
- · hohe thermische Stabilität
- · universelle chemische Beständigkeit
- · physiologische Unbedenklichkeit
- gute elektrische Isolierwerte

In Stärken von 0,3 bis 15 mm lieferbar. Als Zuschnitt, Rolle, Meterware oder als fertige Dichtung.

Eigenschaften	PTFE virginal	PTFE 25 % Glas
Farbe	weiß	weiß
spez. Gewicht	2,15 g/cm ³	2,26 g/cm ³
Reißfestigkeit	ca. 300 kg/cm ²	ca. 180 kg/cm ²
Reißdehnung	ca. 400 %	ca. 350 %
Temperaturbereich	-200 °C bis +260 °C	-200 °C bis +260 °C

Beständigkeit						
ÖI			se	hr gut		
Säure			se	hr gut		
Lauge		gut				
Alterung		sehr gut				
Stärken [mm]	0,3	0,5	1,0	0,25	0,3	0,5
	1,5	2,0	3,0	1,0	1,5	2,0
	4,0 5,0 6,0 3,0 4,0 5					5,0
	8,0 10,0 12,0 6,0 8,0					10,0
	15,0	20,0	30,0	12,0	15,0	
Standardmaß [m]	1,2 x 1,2					

PTFE-Gewindedichtband HZ105

Für Gewinde und Rohrverschraubungen die auch nach längerer Zeit leicht lösbar sein sollen.

- · dichtet zuverlässig
- geprüft für fast alle Gase und Sauerstoff (DVGW, BAM)
- beständig bei Temperaturen von -100 °C bis +260 °C
- · lange Lebensdauer
- kein Festrosten
- · einfache und saubere Montage

Geeigent für Erdgas, Sauerstoff, Chemikalien, Laugen, Öl, Wasser, Benzin, ... Spezialband auch für flüssigen Sauerstoff bis +60 °C erhältlich

Bandbreite x Bandstärke [mm]	Rollenlänge [m]
12 x 0,08	12
12 x 0,1	12

Strukturiertes PTFE-Dichtungsmaterial

Strukturiertes PTFE-Dichtungsmaterial

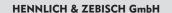
Unser Sortiment der Reihe TF besteht aus hochwertigen, mulitdirektionalen Dichtungsplatten aus virginalem PTFE die mit verschiedenen Stoffen gefüllt sind. Auf Grund des hohen Faserniveaus werden die bei herkömmlichem PTFE auftretenden Probleme wie Kaltfluss und Kriechverformung vermieden. Dadurch ist die Dichtung in deutlich höheren Druck-/Temperatur-Kombinationen einsetzbar.

Vorteile

- · exzellente Kompressibilitätswerte
- · hervorragende Rückfederung
- · geringer Warmsetzwert
- · hohe Diffusionsdichte
- · drastisch reduzierter Kaltfluss
- · hohe mechanische Festigkeit
- · hohe chemische Beständigkeit

Vorteile bei der Montage

- · einfache Handhabung
- geringe Einbau-Flächenpressung notwendig
- · Einbau auch bei geringen Flanschabständen möglich


Unsere PTFE-Dichtungsplatten wurden TA-Luft geprüft und als HOCHWERTIG eingestuft.

Geschweißte Dichtungen aus TF-Platten für große Durchmesser

Wir bieten Ihnen Dichtungen mit großen Außendurchmessern (größer als die Platte) aus strukturiertem TF-Material. Durch die präzise Fertigung erreichen geschweißte Dichtungen dieselben Dichtheitsklassen wie ungeschweißte.

- Durchmesser, welche die Plattengröße bei weitem übertreffen
- Durch die Herstellung von Dichtungen aus geschweißten Segmenten wird die Plattenausnutzung optimiert.
- perfekte Passgenauigkeit
- · präzise Fertigung
- · optimale Leckagewerte

Vergleich strukturierte PTFE-Dichtungsplatten

Type

Zusammensetzung

Zulassungen

Farbe

Dichte

Zugfestigkeit

Kompressibilität

Rückfederung

Leckage (TA Luft)

max. Temperatur

max. Druck

Abmessungen Lieferformen

multi-X

1500 x 1500 mm 0,5 / 1,0 / 1,5 / 2,0 / 3,0 / 4,0 / 5,0 / 6,0 mm

TF1570

1500 x 1500 mm 1,5 / 2,0 / 3,0 / 4,8 / 6,4 mm 1200 x 1200 mm 1,0 mm

TF1580 / TF1590

1500 x 1500 mm 1,5 / 2,0 / 3,0 mm 1200 x 1200 mm 1,0 mm

Strukturiertes PTFE

TF1510

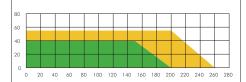
PTFE gefüllt mit Mikro-Hohlglaskugeln

BAM, TA-Luft, GL, FDA, Ausblassicherheitstest (VDI 2200)

weiss

1,1 g/cm³

14 N/mm²


50 %

16 %

1,1 .10^{-5 mbar l}/_{sm}

260 °C

55 bar

Beschreibung

TF1510 hat die höchste Kompressibilität von allen TF-Platten. Es wird hergestellt aus virginalem PTFE, gefüllt mit Mikro-Hohlglaskugeln.

Vorteile

- Besonders gut geeignet für den Einsatz bei stark beanspruchten, sensiblen und zerbrechlichen Flanschanschlüssen.
- Gut geeignet für den Einsatz mit einer Vielzahl von aggressiven Flüssigkeiten.
- hohe Eigenspannung
- · leicht zu schneiden
- · exzellente Anpassungsfähigkeit

TF1570

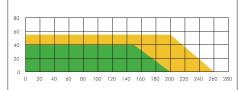
PTFE gefüllt mit Mikro-Hohlglaskugeln

FDA, TA-Luft, GL, BAM Ausblassicherheitstest (VDI 2200)

blau

1,7 g/cm³

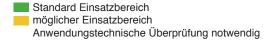
14 N/mm²


35 %

30 %

3,7 .10^{-6 mbar l}/_{sm}

260 °C


55 bar

Beschreibung

TF1570 ist eine Dichtungsplatte aus strukturiertem PTFE. Aufgrund eines besonderen Herstellungsprozesses kommt es zu einer sehr starken multidirektionalen Orientierung der PTFE-Moleküle. Dadurch wird das für herkömmliche PTFE-Dichtungen typische Kriechverhalten deutlich vermindert. TF1570 besteht aus virginalem PTFE, gefüllt mit Mikro-Hohlglaskugeln.

- Für fast alle Medien geeignet.
 Kann in einem weiten Temperaturbereich eingesetzt werden.
- TF1570 ist besonders für den Einsatz in spannungsempfindlichen Flanschen geeignet.
- TF1570 ist schnell und einfach zu installieren.
- exzellente Anpassungsfähigkeit
- einsetzbar bei aggressiven Flüssigkeiten

Serie TF zu multi-X

Strukturiertes PTFE

TF1580 PTFE mit Bariumsulfat FDA, TA-Luft, BAM, DVGW GL, Ausblassicherheitstest (VDI 2200) weiss 2,9 g/cm³ 14 N/mm² 10 % 40 % 5,9 .10-7 mbar I/sm 260 °C

TF1590

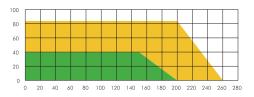
PTFE mit Silikat

FDA, TA-Luft, BAM, DVGW, GL, KTW, Ausblassicherheitstest (VDI 2200)

rotbraun

2,1 g/cm³

14 N/mm²


10 %

40 %

1,1 .10^{-6 mbar l}/sm

260 °C

83 bar

Beschreibung

83 bar

TF1580 ist eine Dichtungsplatte aus strukturiertem PTFE. Durch einen speziellen Herstellungsprozess kommt es zu einer sehr starken multidirektionalen Orientierung der PTFE Moleküle. Dadurch wird das für PTFE Dichtungen typische Kriechverhalten deutlich vermindert. TF1580 besteht aus virginalem PTFE und Bariumsulfat als Füllstoff. Sie ist besonders gasdicht und daher u.a. für die Pharmaindustrie geeignet.

Vorteile

- TF1580 ist für fast alle Medien geeignet und kann in einem breiten Temperaturbereich eingesetzt werden. Höchste Anforderungen an die Reinheit stellen für TF1580 kein Problem dar.
- Mit einer Vielzahl von aggressiven Flüssigkeiten einsetzbar, einschließlich Kohlenwasserstoffverbindungen, moderaten Säuren, starken Laugen, Lösungsmitteln, Wasser, Dampf, Wasserstoffperoxid, Kühlmittel, usw.

Beschreibung

TF1590 ist eine Dichtungsplatte aus strukturiertem PTFE. Aufgrund des speziellen Herstellungsprozesses kommt es zu einer sehr starken multidirektionalen Orientierung der PTFE-Moleküle. Dadurch wird das für PTFE-Dichtungen typische Kriechverhalten deutlich vermindert. TF1590 besteht aus virginalem PTFE, gefüllt mit Silikat. Sie ist härter als TF1580 und wird daher besonders in der Petrochemie eingesetzt.

Vorteile

- TF1590 ist bei hohen Drücken und Temperaturen einsetzbar.
 Insbesondere in der chemischen und petrochemischen Industrie, in Verbindung mit starken Säuren, Lösungsmitteln, Wasser, Dampf, Chlor, usw.
- TF1590 ist schnell und einfach zu installieren.

PTFE

multi-X (multidirektional gereckt)

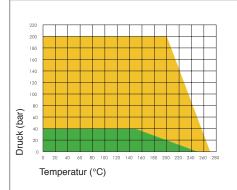
100 % PTFE (ohne Füllstoffe)

FDA, FMPA, TA-Luft, BAM, USP VI, GL, Ausblassicherheitstest (VDI 2200)

weiss

0,90 g/cm³

29 N/mm²


45 %

14 %

2,6 .10^{-7 mbar I/}

270 °C

200 bar

Beschreibung

multi-X ist eine Dichtungsplatte aus 100 % reinem, virginalen, multidirektional expandierten PTFE.

- Universell einsetzbare Dichtungsplatte für eine große Vielfalt von Anwendungen. Sie ist für alle Arten von Flanschen, alle Medien und für einen weiten Temperaturbereich geeignet. Strengste Reinheitsanforderungen stellen kein Problem dar.
- Außergewöhnliche mechanische Festigkeit und weniger Kaltfluss bei höheren Temperaturen verglichen mit anderen Arten von PTFE-Dichtungen.
- Exzellente Anpassungsfähigkeit
- Beim Verpressen erfolgt ausschließlich eine Veränderung der Dichtungshöhe.
- · Unbegrenzt lagerfähig

Marktübliche Dichtungswerkstoffe

HENNLICH & ZEBISCH GmbH

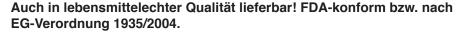
Elastomere, Kunststoffe und Verbundmaterialien

Dupont	Viton, Teflon, Neopren,
Frenzelit	NP universal, NP Basic, NP flexible 815, NP Aktiv, NP Multi II, NP Multi II EG, Novaform SK, Isoplan 750, Isoplan 1000, Isoplan 1100, Isoplan Vario,
Hecker	UDP3620, WS3640, DSL3670, WS3820, WS3822, WS3825, WS3855, WS3844, WS3850, WS3860, CS3880, WS3815,
Induseal	Selecta 470, Selecta 437, Selecta blau / blue, Selecta 280, Selecta 569,
Kautasit	AF100, AF200, AF400F, AF450,
Klinger	C4106, C4300, C4400, C4400-L, C4408, C4409, C4409-L, C4430, C4500, C4509, C8200, TopSil ML 1, Milam PSS, TopGraph 2000, Statite, Topchem 2000,
Reinz	AFM20, AFM22, AFM30, AFM31, AFM32/2, AFM34, AFM34 IGV, AFM34 Metall, AFM37, AFM38, AFM39, AFM5, AFM7,
Teadit	HZ104-SH, TF1510, TF1570, TF1580, TF1590, GP1520, GR1520/GE1520, NA1100, NA1002, NA1040,
Tesnit	Uni blau,
Gummi-Qualitäten	EPDM, NBR, Silikon, CR, CSM, Filzdichtungen, Zellkautschuk, Moosgummi, FPM,
Kunststoffe	POM, PU, PA, PP, FEP, PEEK, PVC,

HENNLICH & ZEBISCH liefert neben Standard-Werkstoffen auch fertig zugeschnittene Flachdichtungen aus vielen Sondermaterialien.

Folgende Fertigungsmethoden stehen zur Verfügung:

Zur Fertigung von Flachdichtungen kommen Exzenterstanzen, Karrenbalkenund Brückenstanzen, Schnellstanzen, Stanzautomaten und Kiss-Cutting-Stanzen zum Einsatz.


Zudem werden Flachdichtungen je nach Material und Größe an CNC-Schneidplottern oder mit Wasserstrahl geschnitten.

Handgefertigte Dichtungen

In der manuellen Fertigung sind erfahrene Mitarbeiter auf die Herstellung von Dichtungen in Übergrößen und Sonderformaten spezialisiert.

Die Grundzuschnitte dieser Spezialdichtungen werden zuvor am CNC-Schneidplotter oder mit der Wasserstrahltechnologie produziert.

In der Segment- und Teilfertigung kommen bewährte Verbindungstechniken zur Anwendung, die ein hochwertiges Dichtungsprodukt garantieren.

Grafit als Dichtungsmaterial

Type

Zusammensetzung

Zulassungen

Farbe **Dichte** Zugfestigkeit Kompressibilität Rückfederung Leckage (TA Luft) max. Temperatur

max. Druck

Kohlenstoff

Chlorid Schwefel

Abmessungen/ **Plattenformate**

GP1520 GR1520/GE1520

1000 x 1000 mm

1,0 / 1,5 / 2,0 / 3,0 mm

NA 1100

1500 x 1600 mm 1500 x 3200 mm

0,5 / 1,0 / 1,5 / 2,0 / 3,0 mm

Grafitplatten

GP1520 Grafitplatten schwarz 1,0 g/cm³ > 40 % > 10 % 450 °C (Dampf 650 °C) 30 bar > 98 % < 30 ppm

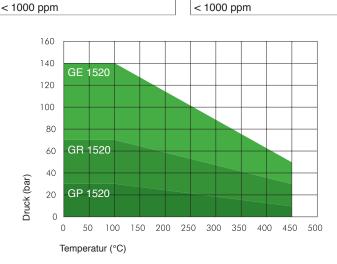
GR1520 / GE1520

Grafitplatten mit Glattblech- (GR) oder Spießblecheinlage (GE)

schwarz

40 - 50 % / 30 - 40 %

10 - 25 % / 15 - 30 %


450 °C (Dampf 650 °C)

70 bar / 140 bar

> 98 %

< 30 ppm

< 1000 ppm

Beschreibung

Grafitplatten werden aus reinem, expandierten, flexiblen Grafit hergestellt und enthalten keine anderen Fasern oder Füllstoffe. Grafitplatten sind sehr universell einsetzbar.

Sie dichten zuverlässig Gase und Flüssigkeiten, sind chemisch beständig gegen fast alle Medien, haben eine hohe Wärmeleitfähigkeit, sind unbegrenzt lagerfähig, benötigen keine Antihaftbeschichtung und sind hervorragend geeignet für Einsätze mit hohen Temperaturschwankungen.

- Aufgrund ihrer spezifischen Struktur sind Grafitplatten besonders geeignet für den Einsatz bei sehr hohen und sehr niedrigen Temperaturen und stark korrodierenden und aggressiven Medien.
- Für empfindliche Flansche.
- Im Gas- und Dampfbereich.

NA1100

Grafit- und Kohlefasern, mit NBR

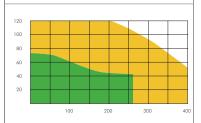
Grafit-Faserplatte

DVGW, KTW, TA-Luft, GL, Ausblassicherheitstest (VDI 2200)

schwarz

1,7 g/cm³

17 N/mm²


9 %

60 %

1,87 .10^{-7 mbar l}/_{sm}

450 °C

130 bar

Beschreibung

Der Typ NA1100 wird mittels Kalanderverfahren aus Kohlefasern und Grafit, gebunden mit NBR, hergestellt. Der gesamte Produktionsablauf unterliegt einer strikten - unter ISO 9001 registrierten - Qualitätskontrolle.

- NA1100 ist eine universell einsetzbare Dichtungsplatte mit hoher mechanischer Beständigkeit.
- Besonders geeignet für hohe Drücke und hohe Temperaturen, für Wasser, gesättigten Wasserdampf, Erdölderivate, Lösungsmittel, Gase und chemische Produkte im Allgemeinen.



Metall- und Metall-Weichstoffdichtungen

HENNLICH & ZEBISCH GmbH

Metall- und Metall-Weichstoffdichtungen

Metall- und insbesondere Metall-Weichstoffdichtungen finden sowohl in der chemischen und petrochemischen Industrie, als auch in der Kraftwerkstechnik verstärkt Anwendung.

Kammprofil- oder Wellringdichtungen und bewährte Dichtungstypen, wie Spiral- oder Ring-Joint-Dichtungen, werden in zunehmendem Maße erfolgreich eingesetzt.

Kammprofildichtung

Vorteile

- geringe effektive Dichtungsbreite im Vergleich zu herkömmlichen Flachdichtungen
- geringe Leckagen
- · hohe Sicherheit

Auf Wunsch können TA-Luftprüfungen durchgeführt werden.

Metall- und Metall-Weichstoffdichtungen

... beinhalten u. a.:

- Kammprofildichtungen
- Wellringdichtungen
- Spiraldichtungen
- Ring-Joint-Dichtungen
- Trennblechdichtungen

Trennblechdichtung

Schweißring

Kammprofildichtungen

mit Zentrierrand

Kammprofildichtungen sind z.B. in Armaturen, Hochdruckleitungen und Anlagen in der Industrie einsetzbar.

Dieser Dichtungstyp wird in unterschiedlichen Ausführungen und Materialien, je nach Kundenwunsch, hergestellt.

Kammprofile garantieren eine hohe Standsicherheit.

Materialien

1.4541 und 1.4571 (weitere auf Anfrage)

Auflagen

Standard: PTFE, Grafit, Glimmer **Sonderbeschichtung:** z.B. Silber

Für eine optimale Abdichtung muss der Flansch zur Aufnahme der Metalldichtung sauber und plan sein!

Kammprofildichtung

Spiraldichtungen

ohne Innen- und Außenring

Um eine optimale Dichtheit zu erreichen, sind neben der Maßgenauigkeit folgende Parameter entscheidend:

- die Spannung der Spirale (je straffer die Wicklung, um so "härter" die Dichtung)
- das Spiralenmaterial Hier kommen je nach Kundenwunsch und Anforderung 1.4541, 1.4571, AISI 304 oder AISI 316 zur Anwendung

Je nach Druck, Temperatur und Medium wird in der Spirale ein Weichstoff wie z.B. Grafit, PTFE oder Glimmer mitgeführt.

Es ist möglich Dichtstoffe wie Grafit und PTFE zu kombinieren.

Wellringdichtungen

z.B. mit Innenring

Gewellte Dichtungen werden als Universaldichtungen in allen Bereichen der Industrie eingesetzt. Sie sind in vielfältigen Ausführungen und Formen mit unterschiedlichen Auflagen, Schnüren oder ohne Auflagen erhältlich. Es können eckige Rahmen, ovale und runde Ausführungen, mit oder ohne Stege, hergestellt werden. Im Gegensatz zu Kammprofildichtungen passen sich Wellringdichtungen bei Flanschblattneigungen mit der ganzen Dichtfläche an.

Zur Reduzierung der Flanschmaße (kompakte Flansche) oder bei nicht biegesteifen Flanschen, mit glatter Dichtfläche, werden die Wellringdichtungen mit einem Stützring versehen und in den Kraftnebenschluss gelegt. Dieses Prinzip bewährt sich besonders bei Dichtverbindungen mit extremen Wechselbelastungen, z.B. Abgasanlagen.

Der Weichstoff wird in den Wellentälern gekammert, das ergibt, in Verbindung mit dem elastischen Verhalten des gewellten Trägermaterials, eine sehr flexible Dichtung mit außergewöhnlich niedriger Leckrate.

Metallummantelte Dichtungen

HENNLICH & ZEBISCH GmbH

Metallummantelte Dichtungen

Beschreibung

Metallummantelte Dichtungen werden vorwiegend in Wärmetauschern und im Apparatebau eingesetzt. Die Dichtung besteht aus einer Weichstoffeinlage, die durch einen Metallmantel geschützt wird. Wir fertigen metallummantelte Dichtungen in doppelt ummantelter Ausführung. Stege, wenn vorhanden, werden eingeschweißt.

Materialaufbau

Bei unseren Standardfertigungen besteht die Ummantelung aus Kohlenstoffstahl, Weicheisen, Edelstahl 304 oder Edelstahl 316L. Die Einlage besteht aus Grafit.

Vorteile

- die Ummantelung der Einlage verhindert Kontamination
- · garantiert hohe Elastizität und Rückfederung
- · nahezu beliebige Dimensionen und Formen möglich

Durch die geschweißte Ausführung der Stege ergeben sich zwei komplett geschlossene Dichtlinien. Es treten keine Spannungsspitzen beim Verpressen der Dichtung auf.

Dichtungen mit Innenbördel

Beschreibung

Gestanzte Dichtungen sind die am häufigsten verwendeten Dichtelemente. Sie stellen ein wesentliches Glied in der Einheit "Flansch-Schraube-Dichtung" dar. Nahezu alle Dichtverbindungen können mit den gefertigten Weichstoffdichtungen zuverlässig abgedichtet werden.

Materialaufbau

Die Eigenschaften unserer Dichtungsmaterialien umfassen gute Anpassungsfähigkeit an raue und unebene Dichtflächen, gute Beständigkeit gegen Gase und Flüssigkeiten bei hohen Drücken und wechselnden Temperaturen, sowie Beständigkeit gegen aggressive Medien.

Innenbördel

Der Werkstoff für den Innenbördel ist der hochlegierte, rostfreie und chemisch beständige Edelstahl 1.4571.

- · hohe Ausblas- und Berstsicherheit
- · verbesserte Dichtwirkung gegen trockene Gase und kriechende Medien
- Sicherheit gegen Kontaminierung hochreiner Medien wie Lacke, pharmazeutische Produkte etc.
- verbesserter Schutz vor Errosion durch abrasiv wirkende Medien sowie hohe Strömungsgeschwindigkeiten
- · Erhöhung der mechanischen und thermischen Einsatzgrenzen
- · besseres Handling bei großen Dichtungen
- bei isolierenden Dichtungen (z.B. PTFE)
 Gewährleistung elektrischer Leitfähigkeit

Gummi-Stahl-Dichtungen

Gummi-Stahl-Dichtungen

Gummi-Stahl-Dichtungen bestehen aus einem definierten Elastomer mit einvulkanisiertem Metallring. Der Ring im Kern der Dichtung sichert die Aufnahme einer guten Flächenpressung und unterstützt die Zentrierung der Dichtung im Flansch. Gummi-Stahl-Dichtungen werden in Flanschsysteme zum Abdichten von Wasser, Abwasser, Gas, Luft, Säuren und Laugen eingesetzt. Standard-Typen der Gummi-Stahl-Dichtungen haben ihre Einsatzgrenze nach DVGW, DIN 30690 bei 16 bar.

EPDM-Dichtungen (Ethylen-Propylen-Kautschuk) haben eine KTW-Zulassung und können somit im Trinkwasserbereich montiert werden.

NBR-Dichtungen (Nitril-Butadien-Kautschuk) sind unter anderem für die Anwendung im Bereich Gas zugelassen. Unsere Gummi-Stahl-Dichtungen entsprechen den Anforderungen der DIN EN 682.

Neben diesen beiden Standard-Qualitäten können wir auch NR, CSM und FKM anbieten!

Nennweite	Dicke	Innen-ø					
DN	S	d1	PN 6	PN 10	PN 16	PN 25	PN 40
15	4	22	-				51
20	4	27	-				62
25	4	34	-				71
32	4	43	76		e DN 40 venuenden		82
40	4	49	-		ø PN 40 verwender	l	92
50	4	61	96				107
65	4	77	116				127
80	4	89	132				142
100	5	115	152		162		168
125	5	141	182	DN 40	192	ø PN 40	194
150	5	169	207	ø PN 16	218		224
200	6	220	263		273 284		290
250	6	273	317	328	329	340	352
300	6	324	373	378	384	400	417
350	7	356	423	438	444	457	474
400	7	407	473	489	495	514	546
450	7	458	-	539	-	-	-
500	7	508	578	594	617	624	-
600	7	610	679	695	734	731	747
700	8	712	784	810	804	833	-
800	8	813	890	917	911	942	-
900	8	915	990	1017	1011	1042	-
1000	8	1016	1090	1124	1128	1154	-
1100	8	1120	-	-	1228	1254	-
1200	8	1220	1307	1341	1342	1364	-
1400	8	1420	1524	1548	1542	1578	-
1600	8	1620	1724	1772	1764	1798	-
1800	8	1620	1931	1972	1965	2000	-
2000	8	2020	2138	2182	2168	2230	-

Profil-, Formdichtungen und aufblasbare Dichtungen

HENNLICH & ZEBISCH GmbH

Profildichtungen

Profildichtungen werden in verschiedenen Formen für nahezu alle Industriezweige extrudiert.

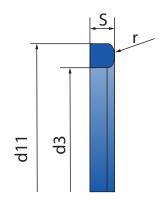
Ihre Vorteile

- · reine Meterpreise
- keine Formkosten
- · schnelle Lieferzeiten
- · viele Standardqualitäten

Auf Wunsch und Anforderung legen wir auch neue Profile nach Zeichnung für Sie aus und erstellen kostengünstig neue Formen.

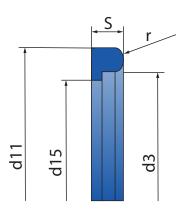
Auch für eine geringe Meteranzahl und Sondermaterialien aus z.B. lebensmittelechten Elastomerqualitäten.

Formdichtungen und aufblasbare Dichtungen

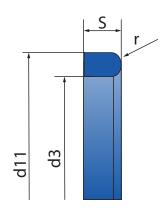

Diese Dichtungen stellen Sonderdichtungen dar und werden individuell für Kunden nach Zeichnung gefertigt. Sowohl komplexe, als auch einfache 3D-Geometrien lassen sich so realisieren.

Mehr als 2500 Formen sofort verfügbar!

- 111	Auflageprofile		Kantenschutzprofile	Д	Silikonschaumprofile
<u>م</u>	Fahnenprofile)	Keil- und Steckprofile		Vierkantprofile
····	Fassadenprofile		Kronenprofile	L	Winkelprofile
Н	H-Profile	1	Siebleistenprofile	Q	Rolltorprofile
	Halbrundprofile	Ш	U-Profile		Fingerschutzprofile


Sonderprofile nach Ihren Vorgaben!

Milchrohrverschraubungsringe DIN 11851


Normale Ausführung nach DIN 11851

		_		
Nennweite	d3	d11	r	S
10	12	20	2,3	4,5
15	18	26	2,3	4,5
20	23	33	2,3	4,5
25	30	40	2,8	5
32	36	46	2,8	5
40	42	52	2,8	5
50	54	64	2,8	5
65	71	81	2,8	5
80	85	95	2,8	5
100	104	114	2,8	6
125	130	142	3,5	7
150	155	167	3,5	7

Ausführung mit Bund

Nennweite	d3	d11	d15	g	r	S
10	12	20	10,5	1,5	2,3	5
15	18	26	16,5	1,5	2,3	5
20	23	33	20,5	1,5	2,8	5
25	30	40	26,5	2	2,8	6
32	36	46	32,5	2	2,8	6
40	42	52	38,5	2	2,8	6
50	54	64	50,5	2	2,8	6
65	71	81	66,5	2	2,8	6
80	85	95	81,5	2	2,8	6
100	104	114	100,5	2	2,8	6
125	130	142	125	2	3,5	7
150	155	167	150	2	3,5	7

Hohe Ausführung

Nennweite	d3	d11	r	s
25	30	40	2,8	8
32	36	46	2,8	8
40	42	52	2,8	8
50	54	64	2,8	8
65	71	81	2,8	6,5
65	71	81	2,8	8
80	85	95	2,8	6,5
80	85	95	2,8	8
100	104	114	2,8	8

mit FDA - Zulassung

Verfügbare Qualitäten:

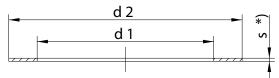
EPDM - für Dampf, Säuren und Laugen (nicht für Öle und Fette)

NBR - für Kohlenwasserstoffe, Öle und Fette SILIKON

- sehr gut für Medien im Lebensmittelbereich

FPM (Viton®) PTFE

- sehr gute chemische Beständigkeit, für aggressive Medien - exzellente chemische Beständigkeit, sehr hohe Temperaturen

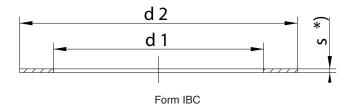


Flachdichtungen Standard DIN 2690

HENNLICH & ZEBISCH GmbH

Flachdichtungen für Flansche mit ebener Dichtfläche (Nenndruck 1 bis 40)

Bezeichnung einer Flachdichtung für Nennweite 100 und Nenndruck 16 aus C4400: Dichtung DN 100, PN 16 nach DIN 2690 - C4400


	.,			d2	D.D.		
DN	d1			Nenndruck			
		1 und 2,5	6	10	16	25	40
4	6	-	-	-	-	30	-
6	10		28				38
8	14		33				43
10	18		38				45
15	22		43				50
20	28		53	nach ND 40	nach ND 40		60
25	35		63	bestellen	bestellen		70
32	43		75	Deciciion	Doolollon	nach ND 40	82
40	49		85			bestellen	92
50	61		95				107
65	77		115				127
80	90		132				142
100	115		152		162		168
125	141		182		192		195
150	169	nach ND 6	207	nach ND 16	218		225
175	195	bestellen	237	bestellen	248	255	267
200	220		262		273	285	292
250	274		318	328	330	342	353
300	325		373	378	385	402	418
350	368		423	438	445	458	475
400	420		473	490	497	515	547
450	470		528	540	557	565	572
500	520		578	595	618	625	628
600	620		680	695	735	730	745
700	720		785	810	805	830	850
800	820		890	915	910	940	970
900	920		990	1015	1010	1040	1080
1000	1020		1090	1120	1125	1150	1190
1200	1220	1290	1305	1340	1340	1360	1395
1400	1420	1490	1520	1545	1540	1575	1615
1600	1620	1700	1720	1770	1760	1795	1830
1800	1820	1900	1930	1970	1960	2000	-
2000	2020	2100	2135	2180	2165	2230	-
2200	2220	2305	2345	2380	2375	-	-
2400	2420	2505	2555	2590	2585	-	-
2600	2620	2705	2760	2790	2785	-	-
2800	2820	2920	2970	3010	-	-	-
3000	3020	3120	3170	3225	-	-	-
3200	3220	3320	3380	-	-	_	-
3400	3420	3520	3590	_	-	_	-
3600	3620	3730	3800	_	-	-	
3800	3820	3930	-	_	-	_	
4000	4020	4130					

Farbig gekennzeichnete Nennweiten sind ab Lager verfügbar (Material C4400, 2 mm stark).

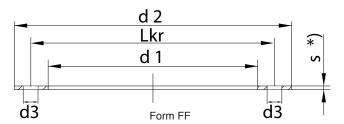
^{*)} s = Stärke der Dichtung kann beliebig gewählt werden.

Flachdichtungen Standard EN 1514-1

Flachdichtungen Form IBC (Nenndruck 6 bis 40)

				d	2	
DN	d1				uck [ND]	
[mm]		6	10	16	25	40
10	18	39				46
15	22	44				51
20	27	54				61
25	34	64				71
32	43	76	nach ND 40	nach ND 40		82
40	49	86	bestellen	bestellen	and ND 40	92
50	61	96			nach ND 40 bestellen	107
60	72	106			pestellen	117
65	77	116				127
80	89	132				142
100	115	152		162		168
125	141	182	nach ND 16	192		194
150	169	207	bestellen	218		224
200	220	262		273	284	290
250	273	317	328	329	340	352
300	324	373	378	384	400	417
350	356	423	438	444	457	474
400	407	473	489	495	514	546
450	458	528	539	555	564	571
500	508	578	594	617	624	628
600	610	679	695	734	731	747
700	712	784	810	804	833	
800	813	890	917	911	942	
900	915	990	1017	1011	1042	
1000	1016	1090	1124	1128	1154	
1200	1220	1307	1548	1542	1578	
1400	1420	1524	1772	1764	1798	
1600	1620	1724	1972	1964	2000	
1800	1820	1931	2182	2168	2230	
2000	2020	2138	2384			
2200	2220	2348	2594			
2400	2420	2558	2794			
2600	2620	2762	3014			
2800	2820	2972	3228			
3000	3020	3172				
3200	3220	3382				
3400	3420	3592				
3600	3620	3804				

Form IBC (Made in man)


 $^{^{\}star}$) s = Stärke der Dichtung kann beliebig gewählt werden.

Flachdichtungen Standard EN 1514-1

HENNLICH & ZEBISCH GmbH

Flachdichtungen Form FF (Nenndruck 6 bis 40)

										Form	FF										
												:	Schra	uben	löche	r					
				d2	ra i Da								Nenn	druck	(ND)						
DN	d1		Nenn	druck	[ND]				LKR				Ar	nzahl	[n]		d3				
		6	10	16	25	40	6	10	16	25	40	6	10	16	25	40	6	10	16	25	40
10	18	75				90	50				60	4				4	11				14
15	22	80	_	_		95	55				65	4				4	11				14
20	27	90	nach ND 40 bestellen	nach ND 40 bestellen		105	65	en	en		75	4				4	11	en	en		14
25	34	100	sste	sste	en	115	75	nach ND 40 bestellen	nach ND 40 bestellen	_	85	4	_			4	11	nach ND 40 bestellen	nach ND 40 bestellen	_	14
32	43	120) pe) be	ND 40 bestellen	140	90) be) pe	ND 40 bestellen	100	4	nach ND 40 bestellen	_		4	14) be) be	nach ND 40 bestellen	18
40	49	130	94	940	sec	150	100	0 40	0 40	est	110	4	est	nach ND 40 bestellen		4	14	0 40	0 40	est	18
50	61	140	뉟	Z	40	165	110	Z	Z	40 k	125	4	40 k	oest		4	14	Z	Z	40 k	18
60	72	150	ach.	ach		175	120	Jack	Jack	9	135	4	Q.	40 k	_	8	14	Jach	Jack	9	18
65	77	160	Ĕ	ŭ		185	130	_	_	nach I	145	4	Ch I	Q.	elle	8	14	-	_	달	18
80	89	190			nach	200	150			ng	160	4	n	ch	40 bestellen	8	18			ng	18
100	115	210	9	220	_	235	170	9	180		190	4		บอ	40	8	18	9	18		22
125	141	240	nach ND 16 bestellen	250		270	200	nach ND 16 bestellen	210		220	8			nach ND	8	18	nach ND 16 bestellen	18		26
150	169	265	ch N	285		300	225	ch N	240		250	8			lg Ch	8	18	ch N	22		26
200	220	320	na p	340	360	375	280	De de	295	310	320	8	8		na	12	18	na b	22	26	30
250	273	375	395	405	425	450	335	350	355	370	385	12	12			12	18	22	26	30	33
300	324	440	445	450	485	515	395	400	410	430	450	12	12	12		16	22	22	26	30	33
350	356	490	505	520	555	580	445	460	470	490	510	12	16	16		16	22	22	26	33	36
400	407	540	565	580	620	660	495	515	525	550	585	16	16	16		16	22	26	30	36	39
450	458	595	615	640	670	685	550	565	585	600	610	16	20	20		20	22	26	30	36	39
500	508	645	670	715	730	755	600	620	650	660	670	20	20	20		20	22	26	33	36	42
600	610	755	780	840	845	890	705	725	770	770	795	20	20	20		20	26	30	36	39	48
700	712		895	910	960			840	840	875			24	24	24			30	36	42	
800	813		1015	1025	1085			950	950	990			24	24	24			33	39	48	
900	915		1115	1125	1185			1050	1050	1090			28	28	28			33	39	48	
1000	1016		1230	1255	1320			1160	1170	1290			28	28	28			36	42	56	
1200	1220		1455	1485	1530			1380	1390	1420			32	32	32			39	48	56	
1400	1420		1675	1685				1590	1590	1640			36	36	36			42	48	62	
1600	1620		1915	1930	1975			1820	1820	1860			40	40	40			48	56	62	
1800	1820		2115	2130	2195			2020	2020	2070			44	44	44			48	56	70	
2000	2020		2325	2345	2425			2230	2230	2300			48	48	48			48	62	70	
2200	2220																				
2400	2420																				
2600	2620																				
2800	2820																				
3000	3020																				
3200	3220																				
3400	3420																				
3600	3620																				

^{*)} s = Stärke der Dichtung kann beliebig gewählt werden.

Hochtemperatur-Dichtwerkstoffe

Silikatfaser

Diese Produkte bestehen aus Calcium-Silikat-Fasern und werden aus texturierten und gezwirnten Filamentgarnen hergestellt. Durch die Texturierung und zusätzliche Zwirnung werden Isolierwirkung und Abriebfestigkeit wesentlich verbessert.

chemische Zusammensetzung							
SO ₂ [%]	ca. 55						
Al ₂ O ₃ [%]	ca. 14						
CaO [%]	ca. 15						
sonstige	TiO ₂ , Fe ₂ O ₃ , MgO, K ₂ O, Na ₂ O, B ₂ O ₃						

Eigenschaften	
Temperaturbeständigkeit	1200 °C
Glühverlust	ca. 2 %

Vorteile

- · hohe Abriebfestigkeit
- gute Isoliereigenschaften durch geringe Wärmespeicherung
- hervorragende Beständigkeit gegen flüssige Metalle, Funkenflug, Schlacken
- sehr gute elektrisch-isolierende Eigenschaften
- gute Schnittfestigkeit

Aufgrund dieser Eigenschaften haben sich SILTEX-H Produkte hervorragend bei mechanischer Beanspruchung im Hitzeschutz- und Isolierbereich bewährt. Diese Produkte werden ausschließlich aus Garnen mit einem Filamentdurchmesser von \geq 6 μ m hergestellt. Sie liegen somit außerhalb des gesundheitsgefährdenden Faserbereichs.

Glasfaser

Dämm- und Dichtungsmaterial aus Glasfasergarn wird aus reinen Fasern vom Typ E produziert. Diese Fasern eignen sich hervorragend zur hochthermischen Isolation und Abdichtung in verschiedenen Industriebereichen.

Eigenschaften

- · ausgezeichnete thermische und elektrische Isolierfähigkeit
- · sehr gute Ozonbeständigkeit
- exzellente mechanische Eigenschaften
- · hervorragende chemische Beständigkeit
- Temperaturbeständigkeit bis +600 °C (kurzzeitig +700 °C)

Keramikfaser

Keramikfaser Dichtmaterialien weisen aufgrund ihrer Zusammensetzung eine hervorragende Dauertemperaturbeständigkeit auf, welche oberhalb von 1000 °C liegt. Weiters zeichnet sich dieses Material auch durch eine sehr gute chemische Beständigkeit und eine hohe mechanische Belastbarkeit aus.

Eigenschaften

- ausgezeichnete thermische Isolierfähigkeit
- hervorragende mechanische/chemische Beständigkeit (Ausnahmen sind z.B. Fluss- / Phosphorsäure und starke Laugen)
- Temperaturbeständigkeit bis +1200 °C (Schmelzpunkt +1700 °C)

Erhältlich in Bändern, Rollen, Platten, als Packung oder Zuschnitt!

Stopfbuchspackungen und Zubehör

Kohlo / Grafit

HENNLICH & ZEBISCH GmbH

Kohle / Grafit					PTFE			PTFE / Aramid						
Туре		77A/77AZ	77A/74B	74A	74B	77D	74P	77AV	72B	72D	72A		73/72AZ	70A
Faser		exp. Grafit	exp. Grafit / Kohle	Grafit	Kohle	exp. Grafit/ Inconel®	Preox	exp. Grafit/ Inconel®	PTFE	PTFE	g PTFE	gPTFE- Aramid	gPTFE- Aramid	gPTFE- Aramid
Imprägnierung				Grafit	Grafit	Grafit	Grafit	Grafit	PTFE	PTFE		PTFE	PTFE	
Schmiermittel										ja	Silikon	Silikon	Silikon	Silikon
bar	rot.	30		30	25		25		20	20	35	30	30	35
bar	OSZ.	100		100	100				150	30	100	200	50	250
bar	stat.	300	300	300	300	450	100	450	250		200	200	200	250
m/s	V	30/20		20	20		15	<1	5	12	25	20		25
°C		-240	-240	-240	-240	-240		-240	-200	-100	-200	-100	-100	-100
°C	+	+450	+450	+450	+450	+450	+300	+455	+280	+280	+280	+280	+280	+280
°C	Dampf	+650 1)	+650	+650	+650	+650		+650						
pН		0 - 14	0 - 14	0 - 14	0 - 14	0 - 14	3 - 12	0 - 14	0 - 14	0 - 14	0 - 14	2 - 12	2 - 12	0 - 14
Dichte	ca. g/cm ³	1,0	1,1	0,9	1,1	1,6	0.9	1,6	1,7	1,8	1,6	1,5	1,6	1,6
Wasse		•	•	•	•	•	•	•	•	•	•	•	•	•
Dampf		•	•	•	•	•	•	•	•	•	•	•	•	•
neutr. I	Lösungen	•	•	•	•	•	•	•	•	•	•	•	•	•
stark verdünnte		•	•	•	•	•	•	•	•	•	•	•	•	•
Säurer		_	_	_	_		0	_	_		_			_
	onz. Säuren	•	•	•	•	•	0	•	•	•	•	0	0	•
konz. Säuren		•	•	•	•	•	0	•	•	•	•	•	•	•
verdünnte Alkalien konz. Alkalien		•	•	•	•	•	,			•	•	_		•
inerte (•	•	•	•	•	•	•	•	•	•	•	•	•
saure (•	•	•	•	•	0	•		•		0	0	•
Wasse		0	0			0	•	0	•	0	•	0	0	•
Sauers		•/0	0			<u> </u>		•					•	
VOC ³	Stoll	•	•	•	•	•	•	•	•	•	•	0	0	•
	gsmittel	•	•	•	•	•	•	•	•	•	•	•	•	•
,	erbindungen	•	0	0	-	•		0	•	•	•	•	•	•
	ılöle, Fette	•	•	•	•	•	•	•	•	•	•	•	•	•
synth. Öle		•	•	•	•	•	•	•	•	•	•	•	•	•
abrasive Medien			0						0	0	0	•	•	•
Bitumen									0	0	0	•	•	•
	n, Lacke	•	•	•	•	•	•	•	•	•				
									FDA					
Prüfun	gen²		Fire Safe		100	Fire Safe		4)	EG1935/2004	FDA	WRAS			

Sets aus geflochtenen Packungen

Die vorgepressten Packungsringe sind aus der gesamten Palette an geflochtenen Packungen für alle Wellen- und Spindeldurchmesser lieferbar, sowohl mit 45° als auch mit 90° Schnitt. Kombinationen aus verschiedenen Packungstypen sind möglich.

Auch mit TA-Luftzulassung erhältlich.

Reingrafit-Sets

Diese werden in der gewünschten Dichte aus expandiertem Reingrafit, in 98 % oder 99,85 % Reinheit hergestellt. Falls erforderlich, können die Reingrafitringe mit Kammerungsringen aus geflochtenem Grafit- oder Kohlegarn kombiniert werden. Mit solchen Kombinationen erreicht man sehr niedrige Leckagewerte und eine hohe Druckbeständigkeit.

Aramid					
73A	26M	26P	26LM		
Aramid	Meta-	Aramid-	Nomex®		
PTFE	Aramid PTFE	Stapelfaser PTFE	Nomex		
Silikon	ja	ja	ja		
Ollikori	,	,	ja		
35	35	20	25		
200	150	80	50		
250	200	150	100		
15	15	15	20		
-100	-100	-100	-50		
+280	+290	+280	+250		
			+180		
2 - 12	1 - 13	2 - 12	1 - 13		
1,5	1,5	1,4	1,3		
•	•	•	•		
•	•	•	•		
•	•	•	•		
•	•	•	•		
0	0	0	0		
•	0	•	0		
•	•	•	•		
0	0	0	0		
	O	0	0		
	0	0	•		
0	•	•	•		
0	0	0	<u> </u>		
•	•	•	•		
•	•	•	•		
•		•	•		
•	•	•	•		
	•	•	•		
			FDA EG1935/2004		
		Section 1997	and the same of th		

Glas				
75A	75B			
Glas	Glas			
PTFE	Grafit			
ja				
15				
20	150			
150	150			
-40				
+280	+550			
1200	+200			
3 - 12	4 - 11			
2	1,5			
•	•			
0	O			
•	•			
•	•			
•	•			
•	•			
0	O			
0	O O			
9	9			
•	•			
203				

Diverse					
Diverse					
75C	76A	77B			
Acryl	Ramie	Novoloid			
PTFE	PTFE	PTFE			
Silikon	ja	ja			
20	20	25			
80	20	50			
100	30	100			
12	10	15			
-100		-100			
+230	+130	+250			
2 - 12	5 - 12	1 - 13			
1,5	1,5	1,3			
•	•	•			
•		•			
•	•	•			
•	0	0			
0					
0	0	•			
•	0	•			
0					
		O			
		0			
•		•			
•	•	•			
•					
0	0	•			
0		•			
		•			
WRAS					
VVIIIAO	5285	12.60			

Packungsschneider mit 45° Schnitt

Zum Ablängen von Packungsringen mit exaktem Schrägschnitt:

- · kein Verschnitt und Abfall
- präzise Ringzuschnitte
- handlich
- · einfach zu bedienen

Packungszieher Das Spezialwerkzeug zum Entfernen von Packungsringen aus dem Stopfbuchsraum

- · einfach
- schnell
- · problemlos

	-
	Туре
	Faser
	Imprägnierung
	Schmiermittel
bar	rot.
bar	OSZ.
bar	stat.
m/s	V
°C	_
°C	+
°C	Dampf
	pН
	Dichte ca. g/cm ³
	Wasser
	Dampf
	neutr. Lösungen
:	stark verdünnte Säuren
	mittl. konz. Säuren
	konz. Säuren
	verdünnte Alkalien
	konz. Alkalien
	inerte Gase
	saure Gase
	Wasserstoff
	Sauerstoff
	VOC ³
	Lösungsmittel
	org. Verbindungen
	Mineralöle, Fette
	synthetische Öle
	abrasive Medien
	Bitumen
	Farben, Lacke
	Prüfungen ²⁾

Legende

- geeignet
- O bedingt geeignet
- 1) Inertgas bis 1000 °C
- 2) Überprüfen Sie die Betriebsparameter und die besonderen Hinweise der Zulassung im Zulassungsbericht dieser Type.
- 3) flüchtige Kohlenwasserstoffe
- 4) zertifizierte Low-Leakage Packing
 Technology, TA-Luft-Zertifikat, anwendbar
 für VOC u. WHAP Emissionsvorschrift,
 API 622/624/607, ISO15848, **BAM-getestet**

Querschnitt [mm]	Gewicht pro Spule
bis 5	1 kg
6 - 10	2 kg
11 - 14	3 kg
15 - 20	5 kg
22 - 25,4	10 kg Bund

HENNLICH-Seal-Cage-System

HENNLICH & ZEBISCH GmbH

HENNLICH-Seal-Cage-System

Das **HENNLICH** Seal-Cage-System verbessert die Leistung und Zuverlässigkeit von injizierbarem Packungs-Verbundmaterialien. Die Idee, anstelle von relativ harten, geflochtenen Packungsringen, weiches, faserhaltiges und verformbares Verbundmaterial in den Stopfbuchsraum zu pressen ("injizieren"), ist seit langem bekannt.

Bisher wurden nur sehr beschränkte und wenige Erfolge erzielt.

Das **HENNLICH** Seal-Cage-System ermöglicht eine zuverlässige und dauerhafte Abdichtung von Wellen mit vielen Vorteilen.

Vorteile:

- · weniger Stillstandzeiten
- kein plötzlicher Ausfall und längere durchgehende Laufzeiten des Aggregates, da bei laufendem Betrieb Dichtungsmasse nachinjiziert werden kann!
- · nahezu leckagefreie Abdichtung
- KEIN Spülwasser erforderlich, dadurch erhebliche Einsparungen im Bereich Wasser- und Abwasserkosten!
- · kaum Wellen- und/oder Schonhülsenverschleiß
- · sehr geringer Wartungsaufwand
- Energieeinsparung durch geringere Reibung
- · geringe Lagerhaltung

Unsere Forschungen haben gezeigt, dass Störungen im Prozessablauf zum Ausfall von herkömmlichen Abdichtungen mit Verbundmaterialien führen. Plötzliche Druckschwankungen, Saug- oder Förderkavitation, Wellenschlag, Vibrationen und beschädigte Wellen tragen zum Versagen von herkömmlichen Abdichtungen - meist durch Extrusion des Verbundmateriales - bei. Das **HENNLICH** Seal-Cage-System wurde speziell zur Verhinderung dieser Extrusion(en) entwickelt.

Das Seal-Cage-System ermöglicht es konstanten Druck auf die Endringe auszuüben. Dies ist ohne Seal-Cage NICHT möglich. Der Seal-Cage selbst hält das Verbundmaterial besser zusammen und verhindert – in Verbindung mit den angepressten Endringen – die Extrusion des Packungs-Verbundmateriales.

Unsere Kunden berichten von wesentlichen Einsparungen in Bezug auf Zeit, Wasser, Energie-, und Lagerkosten.

Speziell der ökologische Vorteil der Wasser-, Abwassereinsparungen und der reduzierte Wartungsaufwand veranlassen mehr und mehr Betriebe zur Umstellung auf das **HENNLICH** Seal-Cage-System.

Der Vorteil, dass die Wellenabdichtung nicht plötzlich ausfallen kann trägt dazu bei, dass dieses Abdichtungssystem mehr und mehr als Alternative und Problemlösung angesehen wird. Erreicht wird dies durch die Möglichkeit, Dichtungsmasse während des laufenden Betriebes nach zu injizieren. Bei z. B. Gleitringdichtungen und geflochtenen Packungsringen ist das nicht möglich.

Das **HENNLICH** Seal-Cage-System besteht aus folgenden Komponenten:

- robuste, handbetätigte Injektionspumpe bis 750 bar
- Packungs-Verbundmaterial
- Seal-Cage-System

Zubehör:

- Sure-Cut Hand-Packungsschneider
- Sure-Cut Hand-Packungsschneider Zubehörset bestehend aus Ersatzklinge, Schärfer
- Packungsstopfer und -zieher (Haken)
- Gehrungslade und Säge zum Schneiden von Seal-Cage
- Master Pinpack I + II

Schulung/Training: Stopfbuchspackungen

HENNLICH & ZEBISCH GmbH

Ihr Mehrfach-Nutzen:

- Schaffung von zusätzlichem Know-How
- Verlängerung Ihrer Maschinen-Standzeiten
- Verkürzung von Stillstandszeiten

... und nicht zuletzt mehr Mitarbeiterzufriedenheit!

Schulung bei HENNLICH

Die Schulung ist in einen theoretischen und einen praktischen Teil gegliedert. Selbst langjährige Anwender erfahren viele hilfreiche Tipps zum richtigen Einbau der Packung. Speziell dafür haben wir einen Pumpendummy konstruiert, an dem jeder Schulungsteilnehmer die Möglichkeit hat, praktische Erfahrungen zu sammeln.

DieTeilnehmerzahl ist auf maximal 12 Personen beschränkt. Falls Sie bereits am Vorabend anreisen, reservieren wir gerne ein Zimmer für Sie.

Für Ihre Verpflegung während der Schulung ist gesorgt.

- · Lösungen für problematische Anwendungen
- idealerweise eine Verlängerung der Laufzeiten

Im Theoretischen Teil beschäftigen wir uns eingehend mit anwendungsoptimierten Packungsmaterialien, Konstruktionshinweisen und den Vorteilen gegenüber weiteren dynamischen Dichtungen.

Schulung vor Ort?

Wir kommen gerne zu Ihnen!

Für eine Schulung bei Ihnen im Haus benötigen wir nur:

- einen Schulungsraum mit Beamer
- · einen Strom- und Wasseranschluss

Der zeitliche Ablauf bei Ihnen im Haus kann grundsätzlich frei gestaltet werden. Für Ihren größtmöglichen Nutzen veranschlagen wir eine Schulungsdauer von ca. 6 - 7 Stunden.

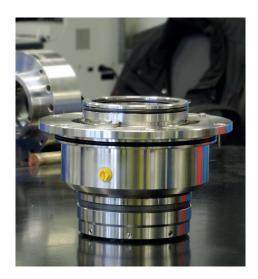
Vereinbaren Sie einen Termin mit unserem Stopfbuchspackungs-Spezialisten Daniel Wiesner

0664 / 88 30 8000 daniel.wiesner@hennlich.at

Service für Gleitringdichtungen

Unser Service:

- Reparatur von Gleitringdichtungen aller bekannten Hersteller
- Produktion von Gleitringdichtungen (gemäß dem Standard eines der größten GLRD-Hersteller weltweit)
- Produktion von Gleitringdichtungen nach Ihren Spezifikationen
- · zertifizierte Endabnahme vor der Auslieferung
- · Auslieferung von Patronendichtungen nur nach erfolgreicher Druckprüfung
- gezielte Schadens- und Ausfallanalyse durch den Einsatz hochauflösender Spezialkameras



Auf Wunsch bieten wir Schadensbilder und Berichte zu den Angeboten.

Vorschläge zur zukünftigen Schadensvermeidung und -umgehung sind selbstverständlich Teil unseres Service.

Ihre Vorteile:

- · kurze Reaktionszeiten
- · schnelle Lieferzeiten
- höchste Qualität
- · Reparatur und Produktion aus einer Hand
- hohe Variabilität

Weitere Informationen zu unseren Produkten finden Sie in unseren Spezialkatalogen ...

... oder unter: www.hennlich.at

Faltenbälge
Teleskopabdeckungen
Späneförderer
Kompensatoren
Pneumatik
Lineartechnik
Verladeeinrichtungen
Rohrsysteme

HENNLICH & ZEBISCH GmbH

A - 4780 Schärding Alfred-Kubin-Straße 9 a-c Tel. 07712 / 31 63 - 0 Fax 07712 / 31 63 - 33 flachdichtung@hennlich.at www.hennlich.at